One Observation on (n, m)-Semigroups

RADOSLAV GALIĆ AND ANITA KATIĆ

ABSTRACT. In this paper one Čupona–Trpenovski's theorem about n–semigroups with neutral element is generalized.

1. Preliminaries

Definition 1 ([2]). Let $n \ge m+1$ and let (Q;A) be an (n,m)-groupoid $(A:Q^n \to Q^m)$. We say that (Q;A) is an (n,m)-group iff the following stetements hold:

(i) For every $i, j \in \{1, \dots, n-m+1\}$, i < j, the following law holds

$$A(x_1^{i-1},A(x_i^{i+n-1}),x_{i+n}^{2n-m}) = A(x_1^{j-1},A(x_j^{j+n-1}),x_{j+n}^{2n-m})$$

i < i, j > -associative lawi; and

(ii) For every $i \in \{1, \dots, n-m+1\}$ and for every $a_1^n \in Q$ there is exactly one $x_1^m \in Q^m$ such that the following equality holds

$$A(a_1^{i-1}, x_1^m, a_i^{n-m}) = a_{n-m+1}^n.$$

Remark 1. For m = 1 (Q; A) is an n-group. Cf. [5].

Definition 2. Let (Q; B) be a (2m, m)-groupoid and $m \geq 2$. Then:

- $(\alpha) \stackrel{1}{B} \stackrel{def}{=} B$; and
- (β) For every $s \in N$ and for every $x_1^{(s+2)m} \in Q$

$$\overset{s+1}{B}(x_1^{(s+2)m}) \overset{def}{=} B(\overset{s}{B}(x_1^{(s+1)m}), x_{(s+1)m+1}^{(s+2)m}).$$

Proposition 1. Let (Q; B) be a (2m, m)-semigroup, $m \ge 2$ and $s \in N$. Then, for every $x_1^{(s+2)m} \in Q$ and for every $t \in \{1, \ldots, sm+1\}$ the following equality holds

$$\overset{s+1}{B}(x_1^{(s+2)m}) = \overset{s}{B}(x_1^{t-1}, B(x_t^{t+2m-1}), x_{t+2m}^{(s+2)m}).$$

Proof. See the proof in [6].

²⁰⁰⁰ Mathematics Subject Classification. Primary: 20N15.

Key words and phrases. n-semigroup, (n, m)-semigroup, n-group, (n, m)-group.

 $^{^{1}(}Q; A)$ is an (n, m)-semigroup.

By 1, 2 and by 1, we obtain:

Proposition 2 ([2]). Let (Q; B) be a (2m, m)-semigroup, $m \ge 2$ and $(i, j) \in N^2$. Then, for every $x_1^{(i+j+1)m} \in Q$ and for all $t \in \{1, \ldots, im+1\}$ the following equality holds

$$\overset{i+j}{B}(x_1^{(i+j+1)m}) = \overset{i}{B}(x_1^{t-1}, \overset{j}{B}(x_t^{t+(j+1)m-1}), x_{t+(j+1)m}^{(i+j+1)m}).$$

2. Main results

Theorem 1. Let (Q; A) be an (n, m)-semigroup, $n = k \cdot m$, $k \geq 3$ and e_1^m be an element from the set Q^m . Also, let for all $x_1^{2m} \in Q$ the following equalities hold:

(1)
$$A(x_1^m, \frac{k-1}{e_1^m}) = x_1^m,$$

(2)
$$A(e_1^m, x_1^m, \frac{k-2}{e_1^m}) = x_1^m \text{ and }$$

(3)
$$A(x_1^{2m-1}, \frac{k-2}{e_1^m}], x_{2m}) = A(x_1^{2m}, \frac{k-2}{e_1^m}]).$$

Then there is a (2m, m)-semigroup (Q; B) such that the following statements hold

a) For all $x_1^m \in Q^m$ the following equality holds

$$B(x_1^m, e_1^m) = x_1^m;$$

b) For all $x_1^m \in Q^m$ the following equality holds

$$B(e_1^m, x_1^m) = x_1^m;$$

c) For all $x_1^m \in Q^m$ the following equality holds

$$B(x_1^m, e_1^m) = B(x_1^{m-1}, e_1^m, x_m);$$
 and

d) For every $x_1^{k \cdot m} \in Q$ the following equality holds

$$A(x_1^{k \cdot m}) = B^{k-1}(x_1^{k \cdot m}).$$

Remark 2. i) For m = 1 Theorem 1 is proved in [1]. Further on, for m = 1 (3) is surplus. Cf. Chapter II-1 in [5].

ii) If (Q; B) is a (2m, m)-group, then $e_1 = \ldots = e_m$. Cf. [3]].

Sketch of the proof. Let

(o)
$$B(x_1^{2m}) \stackrel{def}{=} A(x_1^{2m}, \frac{k-2}{e_1^m})$$

for all $x_1^{2m} \in Q$.

$$\begin{split} 1^\circ & i \in \{1,\dots,m\} : \\ B(x_1^{i-1},B(x_i^{i+2m-1}),x_{i+2m}^{3m}) = \\ & \stackrel{(o)}{=} A(x_1^{i-1},A(x_i^{i+2m-1},\frac{k-2}{e_1^m}),x_{i+2m}^{3m},\frac{k-2}{e_1^m}) = \\ & \stackrel{(o)}{=} A(x_1^{i-1},A(x_i^{i+2m-1},\frac{k-2}{e_1^m}),x_{i+2m}^{3m},\frac{k-2}{e_1^m}) = \\ & \stackrel{(o)}{=} A(x_1^i,A(x_{i+1}^{i+2m-1},\frac{k-2}{e_1^m}),x_{i+2m}^{3m},x_{i+2m+1}^{3m},\frac{k-2}{e_1^m}) = \\ & \stackrel{(o)}{=} A(x_1^i,A(x_{i+1}^{i+2m-1},\frac{k-2}{e_1^m}),x_{i+2m+1}^{3m},\frac{k-2}{e_1^m}) = \\ & \stackrel{(o)}{=} B(x_1^i,B(x_{i+1}^{i+2m}),x_{i+2m+1}^{3m},\frac{k-2}{e_1^m}) = \\ & \stackrel{(o)}{=} B(x_1^m,B(x_{i+1}^{i+2m}),x_{i+2m+1}^{3m}) = \\ & \stackrel{(o)}{=} B(x_1^m,x_1^m) \stackrel{(o)}{=} A(e_1^m,x_1^m,\frac{k-2}{e_1^m}) \stackrel{(o)}{=} x_1^m. \\ & A(x_1^{km}) \stackrel{(i)}{=} A(A(x_1^{km}),\frac{k-1}{e_1^m}) = \\ & \stackrel{(i)}{=} A(x_1^m,A(x_{m+1}^{km},e_1^m),\frac{k-2}{e_1^m}) = \\ & \stackrel{(i)}{=} B(x_1^m,A(x_{m+1}^{km},e_1^m),\frac{k-2}{e_1^m}) = \\ & \stackrel{(i)}{=} B(x_1^m,A(x_{m+1}^{km},A(x_{m+1}^{km},e_1^m)) = \\ & \stackrel{(i)}{=} B(x_1^m,A(x_1^{km},A(x$$

 5°

$$\begin{split} B(x_1^m,e_1^m) &\overset{2^{\circ},3^{\circ}}{=} B(e_1^m,x_1^m) = \\ &\overset{(o)}{=} A(e_1^m,x_1^m,\frac{k-2}{e_1^m}|) = \\ &\overset{(3)}{=} A(e_1^m,x_1^{m-1},\frac{k-2}{e_1^m}|,x_m) = \\ &\overset{4^{\circ}}{=} B(e_1^m,x_1^{m-1},\frac{k-2}{e_1^m}|,x_m) \end{split}$$

 \overline{a}) k=3:

$$\overset{3-1}{B}(e_1^m, x_1^{m-1}, e_1^m, x_m) \stackrel{1^{\circ}}{=} B(e_1^m, B(x_1^{m-1}, e_1^m, x_m)) \stackrel{3^{\circ}}{=} B(x_1^{m-1}, e_1^m, x_m)$$

$$\overline{b}) \ k > 3:$$

$$\stackrel{k-1}{B}(e_1^m, x_1^{m-1}, \frac{k-2}{e_1^m}|, x_m) \stackrel{1.4}{=} B(e_1^m, B(x_1^{m-1}, \stackrel{k-3}{B}(\frac{k-2}{e_1^m}|), x_m)) =
\stackrel{3^{\circ}}{=} B(x_1^{m-1}, \stackrel{k-3}{B}(\frac{k-2}{e_1^m}|), x_m)) \stackrel{(\beta)2^{\circ}}{=} B(x_1^{m-1}, e_1^m, x_m).$$

Theorem 2. Let (Q; B) be a (2m, m)-semigroup, m > 1, e_1^m be an element from the set Q^m and let the following statements hold

(a) For all $x_1^m \in Q^m$ the following equality holds

$$B(x_1^m, e_1^m) = x_1^m;$$

(b) For all $x_1^m \in Q^m$ the following equality holds

$$B(e_1^m, x_1^m) = x_1^m;$$

(c) For all $x_1^m \in Q^m$ the following equality holds

$$B(x_1^{m-1}, e_1^m, x_m) = x_1^m.$$

(d) Also let

$$A(x_1^{k \cdot m}) \stackrel{def}{=} \overset{k-1}{B}(x_1^{k \cdot m})$$

for every $x_1^{k \cdot m} \in Q$, where $k \geq 3$.

Then the following statements hold

- 1) (Q;A) is an (km,m)-semigroup; and
- 2) For all $x_1^{2m} \in Q$ equalities (1)–(3) from Theorem 1 hold in (Q; A).

Remark 3. Cf. Chapter II-1 in [5].

Sketch of the proof. °1 Proof of 1): By (d) and by 1.4.

$$^{\circ}2 \ A(x_{1}^{m}, \frac{k-1}{e_{1}^{m}}) \overset{(d)}{=} \overset{k-1}{B}(x_{1}^{m}, \frac{k-1}{e_{1}^{m}}) = \overset{1.4}{=} B(x_{1}^{m}, \overset{k-2}{B}(\frac{k-1}{e_{1}^{m}})) \overset{(a)}{=} x_{1}^{m}.$$

$$^{\circ}3 \ A(e_{1}^{m}, x_{1}^{m}, \frac{k-2}{e_{1}^{m}}) \overset{(d)}{=} \overset{k-1}{B}(e_{1}^{m}, x_{1}^{m}, \frac{k-2}{e_{1}^{m}}) \overset{(b), (a)}{=} x_{1}^{m}.$$

$$^{\circ}4 \ A(x_{1}^{2m-1}, \frac{k-2}{e_{1}^{m}}), x_{2m}) \overset{(d)}{=} \overset{k-1}{B}(x_{1}^{2m-1}, \frac{k-2}{e_{1}^{m}}), x_{2m}) =$$

$$\overset{1.4}{=} B(x_{1}^{m}, B(x_{m+1}^{2m-1}, \overset{k-3}{B}(\frac{k-2}{e_{1}^{m}})), x_{2m}))^{\dagger} =$$

$$\overset{(c)}{=} B(x_{1}^{m}, B(x_{m+1}^{2m-1}, x_{2m}, \overset{k-3}{B}(\frac{k-2}{e_{1}^{m}}))) =$$

$$\overset{1.4}{=} \overset{k-1}{B}(x_{1}^{2m}, \overset{k-2}{e_{1}^{m}}) =$$

$$\overset{(d)}{=} A(x_{1}^{2m}, \frac{k-2}{e_{1}^{m}}).$$

Proposition 3. Let (Q; B) be a (2m, m)-semigroup, m > 1, e_1^m be an element from the set Q^m and let for all $x_1^m \in Q^m$ the following equalities hold

- $(\widehat{a}) \ B(e_1^m, x_1^m) = x_1^m \ and$
- $(\widehat{b}) \ B(x_1^m, e_1^m) = x_1^m.$

Then, for all $i \in \{0, 1, ..., m\}$ and for every $x_1^m \in Q^m$ the following equality holds

$$(\widehat{c}) \ B(x_1^i, e_1^m, x_{i+1}^m) = x_1^{m\ddagger}$$

Remark 4. In [3] Proposition 3 is proved for (2m, m)-groups. See, also [4].

Sketch of the proof.

$$\begin{split} B(x_1^i,e_1^m,x_{i+1}^m) &\stackrel{(\widehat{a})}{=} B(e_1^m,B(x_1^i,e_1^m,x_{i+1}^m)) = \\ &\stackrel{1.1(i)}{=} B(e_1^i,B(e_{i+1}^m,x_1^i,e_1^m),x_{i+1}^m) = \\ &\stackrel{(\widehat{b})}{=} B(e_1^i,e_{i+1}^m,x_1^i,x_{i+1}^m) = \\ &= B(e_1^m,x_1^m) = \\ &\stackrel{(\widehat{a})}{=} x_1^m. \end{split}$$

 $^{{}^{\}dagger} \stackrel{k-3}{B} (\frac{k-2}{e_1^m}) = e_1^m.$

[‡]See (c) from Theorem 2.

References

- [1] G. Čupona and B. Trpenovski, Finitary associative operations with neutral element, Mat. Bilten (Skopje), 12(1961), 15–24.
- [2] G. Čupona, Vector valued semigroups, Semigroup Forum, 26(1983), 65–74.
- [3] G. Čupona and D. Dimovski, On a class of vector valued groups, Proceedings of the Conf. "Algebra and Logic", Zagreb 1984, 29–37.
- [4] D. Dimovski and S. Ilić, *Commutative* (2m, m)-groups, in: Vector valued semigroups and groups, (B. Popov, G. Čupona and N. Celakoski, eds.), Skopje 1988, 79–90.
- [5] J. Ušan, n-groups in the light of the neutral operations, Mathematica Moravica, Special Vol. (2003), monograph (Electronic version 2006: http://www.moravica.tfc.kg.ac.yu).
- [6] J. Ušan, (n, m)-groups in the light of the neutral operations, Survey article, Mathematica Moravica, Vol. 10 (2006), 107–147.

FACULTY OF ELECTRICAL ENGINEERING UNIVERSITY OF OSIJEK KNEZA TRPIMIRA 2B HR – 31000 OSIJEK CROATIA